Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization

نویسندگان

  • Yongfeng Gong
  • Vijayaram Renigunta
  • Yi Zhou
  • Abby Sunq
  • Jinzhi Wang
  • Jing Yang
  • Aparna Renigunta
  • Lane A. Baker
  • Jianghui Hou
  • Asma Nusrat
چکیده

The molecular nature of tight junction architecture and permeability is a long-standing mystery. Here, by comprehensive biochemical, biophysical, genetic, and electron microscopic analyses of claudin-16 and -19 interactions--two claudins that play key polygenic roles in fatal human renal disease, FHHNC--we found that 1) claudin-16 and -19 form a stable dimer through cis association of transmembrane domains 3 and 4; 2) mutations disrupting the claudin-16 and -19 cis interaction increase tight junction ultrastructural complexity but reduce tight junction permeability; and 3) no claudin hemichannel or heterotypic channel made of claudin-16 and -19 trans interaction can exist. These principles can be used to artificially alter tight junction permeabilities in various epithelia by manipulating selective claudin interactions. Our study also emphasizes the use of a novel recording approach based on scanning ion conductance microscopy to resolve tight junction permeabilities with submicrometer precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renal localization and function of the tight junction protein, claudin-19.

Claudins form a family of transmembrane tight junction proteins that play a key role in control and selectivity of paracellular transport. Mutations in claudin-19, which is expressed in kidney, retina, and myelinated peripheral neurons, were identified in familial hypomagnesemia with hypercalciuria and nephrocalcinosis, a hereditary disease causing renal Mg(2+) and Ca(2+) wasting. Here, we stud...

متن کامل

Claudin Loss-of-Function Disrupts Tight Junctions and Impairs Amelogenesis

Claudins are a family of proteins that forms paracellular barriers and pores determining tight junctions (TJ) permeability. Claudin-16 and -19 are pore forming TJ proteins allowing calcium and magnesium reabsorption in the thick ascending limb of Henle's loop (TAL). Loss-of-function mutations in the encoding genes, initially identified to cause Familial Hypomagnesemia with Hypercalciuria and Ne...

متن کامل

The kidney tight junction (Review)

The tight junction is an important subcellular organelle which plays a vital role in epithelial barrier function. Claudin, as the integral membrane component of tight junctions, creates a paracellular transport pathway for various ions to be reabsorbed by the kidneys. This review summarizes advances in claudin structure, function and pathophysiology in kidney diseases. Different claudin species...

متن کامل

The kidney tight junction

The tight junction is an important subcellular organelle which plays a vital role in epithelial barrier function. Claudin, as the integral membrane component of tight junctions, creates a paracellular transport pathway for various ions to be reabsorbed by the kidneys. This review summarizes advances in claudin structure, function and pathophysiology in kidney diseases. Different claudin species...

متن کامل

Enterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice

Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015